To travel to the moon, establish a moon base and prepare for future mars missions NASA must produce reliable systems.

Total system reliability is more than just hardware and software performance. It includes human performance in space and on the ground.
Human Reliability

The **probability** that the human elements will function as intended over a specified period of time under specified environmental conditions
Why is Human Reliability Important?

Human errors are a significant contributor to system failures, and they have measurable safety and monetary consequences.

Human Errors contribute to loss of:
• Human life;
• One-of-a-kind hardware;
• Government equipment & facilities;
• Scientific knowledge; and
• Public confidence
Human Error Causes Mishaps

NASA

- **57% of Type A mishaps** caused by human error (1996-2005)
 - *Does not include auto accidents or death by natural causes*

- **78% of the Shuttle ground-support operations incidents resulted from human error** (Perry, 1993).

Percentage of Type A Mishaps Occurring During Each Type of Activity 1996-2005

- **Space** 41%
- **Ground Test** 27%
- **Flight Test** 12%
- **Earth Flight** 8%
- **Ground Maintenance** 8%
- **Ground Process** 4%

Outside NASA

- **75% of all US military aircraft losses involve sensory or cognitive errors** (Air Force Safety Center, 2003).

- **63% of approach & landing accidents involve inadequate monitoring and cross-checking** (Air Force Safety Center, 2003).

- **83% of 23,338 accidents involving boilers and pressure vessels were a direct result of human oversight or lack of knowledge** (National Board of Boiler and Pressure Vessel Inspectors, 2005).

- **41% of mishaps at petrochemical plants were caused by human error** (R.E. Butikofer, 1986).
Managing Human Reliability

Build “Error-Tolerant Systems” - systems that reduce the potential for errors and manage the effects of the errors that do occur.

- Mitigation limits the negative effects of error
- System provides feedback to detect errors and controls to correct errors
- System includes redundancy
- System design reduces the potential for error/rate of error
- System design prevents errors (incorporates barriers)

Design Characteristics That Address Error

Nominal rate of human error

Nominal system reliability

% of Perfect Performance

0%

100%

Poor Good Excellent

Order of Precedence
Sample of Human Reliability Activities

Human Reliability Assessment
- Human Reliability Methodology Study
- Human Reliability Database Development
- HF Process Failure Modes and Effects Analysis (HF PFMEA)
- Training and Software

Human Reliability in Design: Building Error Tolerant Systems
- Human Modeling Simulation – Launch Control
- Human Rating & Human System Integration Requirements
- MIDAS Tool Development (CAD Tool)
For More Information

Human Reliability Web Site

Faith Chandler
202-358-0411
Faith.T.Chandler@NASA.gov
Man-Machine Design Analysis System (MIDAS)
Components of a Human Performance Model

Psychological Models
Sensory Models
Anthropometric Models
Biodynamic Models
Team/Org Models
Vehicle Models
Equipment Models
Environment Models
Procedural Models

Model Architecture, Library, Tools

Timeline
Task Network
Performance: WL
Performance: Time
Performance: SA
Performance: Errors
Visualization
FoV/Reach Envelope